Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 13.904
Filtrar
1.
Environ Toxicol Chem ; 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38661510

RESUMEN

Pharmaceuticals are found in aquatic environments due to their widespread use and environmental persistence. To date, a range of impairments to aquatic organisms has been reported with exposure to pharmaceuticals; however, further comparisons of their impacts across different species on the molecular level are needed. In the present study, the crustacean Daphnia magna and the freshwater fish Japanese medaka, common model organisms in aquatic toxicity, were exposed for 48 h to the common analgesics acetaminophen (ACT), diclofenac (DCF), and ibuprofen (IBU) at sublethal concentrations. A targeted metabolomic-based approach, using liquid chromatography-tandem mass spectrometry to quantify polar metabolites from individual daphnids and fish was used. Multivariate analyses and metabolite changes identified differences in the metabolite profile for D. magna and medaka, with more metabolic perturbations for D. magna. Pathway analyses uncovered disruptions to pathways associated with protein synthesis and amino acid metabolism with D. magna exposure to all three analgesics. In contrast, medaka exposure resulted in disrupted pathways with DCF only and not ACT and IBU. Overall, the observed perturbations in the biochemistry of both organisms were different and consistent with assessments using other endpoints reporting that D. magna is more sensitive to pollutants than medaka in short-term studies. Our findings demonstrate that molecular-level responses to analgesic exposure can reflect observations of other endpoints, such as immobilization and mortality. Thus, environmental metabolomics can be a valuable tool for selecting sentinel species for the biomonitoring of freshwater ecosystems while also uncovering mechanistic information. Environ Toxicol Chem 2024;00:1-13. © 2024 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.

2.
J Ethnopharmacol ; : 118252, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38663782

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Atractylis aristata batt., as an endemic plant from the Asteraceae family, holds a significant position in the Ahaggar region of southern Algeria's traditional medicine. The aerial parts of Atractylis aristata was used to cure inflammation, fever, and stomach disorders. AIM OF THE STUDY: The objective of the present investigation was to ascertain the overall bioactive components and phytochemical components and examine the antioxidant, antidiabetic, anti-inflammatory, acute toxicity, and sedative properties of the crude extract obtained from the aerial portions of Atractylis aristata (AaME). MATERIALS AND METHODS: The AaME's antioxidant activity was assessed by the use of pyrogallol autoxidation, (1,1 diphenyl-2-picrylhydrazyl) (DPPH), 2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid (ABTS), and reducing power (RP) techniques. 1 mg/mL of AaME was used to evaluate the antidiabetic activity by applying the enzyme α-amylase inhibitory power test. At the same time, the bovine serum albumin (BSA) denaturation method was employed to quantify the in vitro anti-inflammatory activity at different concentrations (1.5625, 0.78125, 0.390625, 0.1953125 and 0.09765625 mg/ml). In contrast, following the Organization for Economic Co-operation and Development (OECD) guideline No. 423, which covers acute oral toxicity testing protocols, the limit dosage test was employed to assess in vivo acute toxicity. At the dose of 0.08 mg/ml, the carrageenan-induced paw edema approach was used to assess the anti-inflammatory efficacy in vivo, and the sedative activity was carried out at the dose of 0.08 mg/ml using the measurement of the locomotor method. Different bioactive compounds were identified within AaME using LC-MS/MS and HPLC-UV analysis. RESULTS: The acute toxicity study showed no fatalities or noticeable neurobehavioral consequences at the limit test; this led to their classification in Globally Harmonized System (GHS) category Five, as the OECD guideline No 423 recommended. At a concentration of 0.08 mg/mL (2000 mg/kg), AaME showed apparent inhibition of paw edema and a significant (p = 0.01227) reduction in locomotor activity compared to the control animals. Our findings showed that AaME exhibited considerable antioxidant (IC50= 0.040 ± 0.003 mg/ml (DPPH), IC50= 0.005 ± 5.77×10-5 mg/ml (ABTS), AEAC= 91.15 ± 3.921 mg (RP) and IR%=23.81 ± 4.276 (Inhibition rate of pyrogallol) and rebuts antidiabetic activities (I%=57.6241%± 2.81772). Our findings revealed that the maximum percentage of BSA inhibition (70.84±0.10%) was obtained at 1.562.5 mg/ml. Thus, the AaME phytochemical profile performed using phytochemical screening, HPLC-UV, and LC-MS/MS analysis demonstrated that A. aristata can be a valuable source of chemicals with biological activity for pharmaceutical manufacturers. CONCLUSION: The phytochemical profiling, determined through HPLC-UV and LC-MS/MS applications, reveals this plant's therapeutic value. The aerial parts of Atractylis aristata contain bioactive molecules such as gallic acid, ascorbic acid, and quercetin, contributing to its significant antioxidant capabilities. Furthermore, identifying alizarin, the active compound responsible for its anti-inflammatory properties, could provide evidence supporting the anti-inflammatory capabilities of this subspecies.

3.
Artículo en Inglés | MEDLINE | ID: mdl-38664998

RESUMEN

Fungal anthraquinones dermocybin and dermorubin are attractive alternatives for synthetic dyes but their metabolism is largely unknown. We conducted a qualitative in vitro study to identify their metabolism using human liver microsomes and cytosol, as well as recombinant human cytochrome P450 (CYP), UDP-glucuronosyltransferase (UGT) and sulfotransferase (SULT) enzymes. Additionally, liver microsomal and cytosolic fractions from rat, mouse and pig were used. Following incubations of the biocolourants with the enzymes in the presence of nicotinamide adenine dinucleotide phosphate, UDP-glucuronic acid, 3'-phosphoadenosine-5'-phosphosulfate (PAPS) or S-adenosyl methionine (SAM) to enable CYP oxidation, glucuronidation, sulfonation or methylation, we observed several oxidation and conjugation metabolites for dermocybin but none for dermorubin. Human CYP1A1, 1A2, 1B1, 2A6, 2B6, 2C8, 2C9, 2C19, 2D6, 2E1, 3A4 and 3A7 catalysed dermocybin oxidation. The formation of dermocybin glucuronides was catalysed by human UGT1A1, 1A3, 1A7, 1A8, 1A9, 1A10 and 2B15. Human SULT1B1, 1C2 and 2A1 sulfonated dermocybin. Dermocybin oxidation was faster than conjugation in human liver microsomes. Species differences were seen in dermocybin glucuronidation between human, rat, mouse and pig. In conclusion, many CYP and conjugation enzymes metabolized dermocybin, whereas dermorubin was not metabolized in human liver fractions in vitro. The results indicate that dermocybin would be metabolized in humans in vivo.

4.
Artículo en Inglés | MEDLINE | ID: mdl-38665041

RESUMEN

Quantifying reactive aldehyde biomarkers, such as malondialdehyde, acrolein, and crotonaldehyde, is the most preferred approach to determine oxidative stress. However, reported analytical methods lack specificity for accurately quantifying these aldehydes as certain methodologies may produce false positive results due to harsh experimental conditions. Thus, in this research work, a novel HILIC-MS/MS method with endogenous histidine derivatization is developed, which proves to have higher specificity and reproducibility in quantifying these aldehydes from the biological matrix. To overcome the reactivity of aldehyde, endogenous histidine is used for its derivatization. The generated adduct is orthogonally characterized by NMR and LC-HRMS. The method employed a hydrophilic HILIC column and multiple reaction monitoring (MRM) to accurately quantify these reactive aldehydes. The developed method is an unequivocal solution for quantifying stress in in vivo and in vitro studies.

5.
Heliyon ; 10(8): e29606, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38665567

RESUMEN

Background: Ivermectin is a broad-spectrum anthelmintic used to control onchocerciasis from nematode parasites. As an anthelmintic, ivermectin is designed to have high levels in the gastrointestinal tract, so that the systemic intake is relatively low. Due to the very small concentration of ivermectin, a selective and sensitive approach is needed for the analysis of ivermectin in blood. Several methods have been developed using plasma and Dried Blood Spots, but there are still shortcomings due to hematocrit effects. Therefore, this study was conducted to establish a validated ivermectin analysis method with doramectin as the internal standard in using Ultra High-Performance Liquid Chromatography-Tandem Mass Spectrometry. Methods: Mass spectrometry equipped with triple quadrupole and positive electrospray ionization mode was used to conduct the analysis. For the biological matrix, whole blood was used by Volumetric Absorptive Microsampling and extracted using a protein precipitation technique with a combination of acetonitrile and methanol (1:1). VAMS has some advantages such as not being affected by hematocrit, requires a small and fixed volume of sample, also a more efficient sampling process. Results: The optimum conditions were achieved with an Acquity® UPLC BEH C18 column (1,7 µm; 2.1 × 100 mm); extracted-flow rate was 0,2 mL/min; mobile phase was 5 mM ammonium formate pH 3.00 and acetonitrile (10:90) with isocratic elution. Multiple Reaction Monitoring (MRM) detection by m/z values was 892.41 > 569.5 for ivermectin and 916,41 > 331,35 for doramectin. Conclusion: The method has been appropriately validated in compliance with the 2018 guidelines laid out by the US Food and Drug Administration. Resulting the minimum detection (LLOQ) was 1 ng/mL with a linear concentration range spanning from 1 to 150 ng/mL.

6.
Turk J Biol ; 48(1): 80-90, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38665780

RESUMEN

We examined the proteomic profiles of three registered opium poppy cultivars (Papaver somniferum L.) with varying alkaloid contents. The study was conducted on both the stem and capsule organs. A high number of differentially expressed proteins (DEPs) were identified between the cultivars and the organs. We analyzed DEPs for their contribution in GO terms and KEGG pathways. The upregulated DEPs were significantly enriched in photosynthesis and translation for morphine-rich and noscapine-rich cultivars, respectively. The data indicated that photosynthesis is crucial for benzylisoquinoline alkaloid (BIA) biosynthesis, but different processes are also effective in morphine and noscapine biosynthesis, which occur at different branches in the biosynthetic pathway. The proteomics profiles revealed that energy demand is more effective in morphine biosynthesis, while translational control plays a leading role in noscapine biosynthesis. This study represents the first report demonstrating organ-based and cultivar-based protein expression differences in mature poppy plants.

7.
Chemosphere ; 357: 142074, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38657693

RESUMEN

The objective of this study was to assess the photolysis-mediated degradation of malathion in standard and commercial formulations, and to determine the toxicity of these degraded formulations. Degradation tests were carried out with 500 µg L-1 of malathion and repeated three times. The initial and residual toxicity was assessed by using Lactuca sativa seeds for phytotoxicity, Stegomyia aegypti larvae for acute toxicity, and Stegomyia aegypti mosquitoes (cultivated from the larval stage until emergence as mosquitoes) to evaluate the biochemical markers of sublethal concentrations. For the standard formulations the photolytic process efficiently reduced the initial concentration of malathion to levels below the regulatory limits however, the formation of byproducts was revealed by chromatography, which allowed for a more complete proposal of photolytic-mediated malathion degradation route. The degraded formulations inhibited the growth of L. sativa seeds, while only the untreated formulations showed larvicidal activity and mortality. Both formulations slightly inhibited acetylcholinesterase activity in S. aegypti mosquitoes, while the standard formulation decreased and the commercial formulation increased glutathione S-transferase activity. However, there were no significant differences for superoxide dismutase, esterase-α, esterase-ß and lipid peroxidation. These findings indicate that in the absence of the target compound, the presence of byproducts can alter the enzymatic activity. In general, photolysis effectively degrade malathion lower than the legislation values; however, longer treatment times must be evaluated for the commercial formulation.

8.
bioRxiv ; 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38645092

RESUMEN

Objective biomarkers of food intake are a sought-after goal in nutrition research. Most biomarker development to date has focused on metabolites detected in blood, urine, skin or hair, but detection of consumed foods in stool has also been shown to be possible via DNA sequencing. An additional food macromolecule in stool that harbors sequence information is protein. However, the use of protein as an intake biomarker has only been explored to a very limited extent. Here, we evaluate and compare measurement of residual food-derived DNA and protein in stool as potential biomarkers of intake. We performed a pilot study of DNA sequencing-based metabarcoding (FoodSeq) and mass spectrometry-based metaproteomics in five individuals' stool sampled in short, longitudinal bursts accompanied by detailed diet records (n=27 total samples). Dietary data provided by stool DNA, stool protein, and written diet record independently identified a strong within-person dietary signature, identified similar food taxa, and had significantly similar global structure in two of the three pairwise comparisons between measurement techniques (DNA-to-protein and DNA-to-diet record). Metaproteomics identified proteins including myosin, ovalbumin, and beta-lactoglobulin that differentiated food tissue types like beef from dairy and chicken from egg, distinctions that were not possible by DNA alone. Overall, our results lay the groundwork for development of targeted metaproteomic assays for dietary assessment and demonstrate that diverse molecular components of food can be leveraged to study food intake using stool samples.

9.
Pathogens ; 13(4)2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38668279

RESUMEN

The objective of this study was the presentation of quantitative characteristics regarding the scientific content and bibliometric details of the relevant publications. In total, 156 papers were considered. Most papers presented original studies (n = 135), and fewer were reviews (n = 21). Most original articles (n = 101) referred to work involving cattle. Most original articles described work related to the diagnosis (n = 72) or pathogenesis (n = 62) of mastitis. Most original articles included field work (n = 75), whilst fewer included experimental (n = 31) or laboratory (n = 30) work. The tissue assessed most frequently in the studies was milk (n = 59). Milk was assessed more frequently in studies on the diagnosis (61.1% of relevant studies) or pathogenesis (30.6%) of the infection, but mammary tissue was assessed more frequently in studies on the treatment (31.0%). In total, 47 pathogens were included in the studies described; most were Gram-positive bacteria (n = 34). The three bacteria most frequently included in the studies were Staphylococcus aureus (n = 55 articles), Escherichia coli (n = 31) and Streptococcus uberis (n = 19). The proteomics technology employed more often in the respective studies was liquid chromatography-tandem mass spectrometry (LC-MS/MS), either on its own (n = 56) or in combination with other technologies (n = 40). The median year of publication of articles involving bioinformatics or LC-MS/MS and bioinformatics was the most recent: 2022. The 156 papers were published in 78 different journals, most frequently in the Journal of Proteomics (n = 16 papers) and the Journal of Dairy Science (n = 12). The median number of cited references in the papers was 48. In the papers, there were 1143 co-authors (mean: 7.3 ± 0.3 co-authors per paper, median: 7, min.-max.: 1-19) and 742 individual authors. Among them, 15 authors had published at least seven papers (max.: 10). Further, there were 218 individual authors who were the first or last authors in the papers. Most papers were submitted for open access (n = 79). The median number of citations received by the 156 papers was 12 (min.-max.: 0-339), and the median yearly number of citations was 2.0 (min.-max.: 0.0-29.5). The h-index of the papers was 33, and the m-index was 2. The increased number of cited references in papers and international collaboration in the respective study were the variables associated with most citations to published papers. This is the first ever scientometrics evaluation of proteomics studies, the results of which highlighted the characteristics of published papers on mastitis and proteomics. The use of proteomics in mastitis research has focused on the elucidation of pathogenesis and diagnosis of the infection; LC-MS/MS has been established as the most frequently used proteomics technology, although the use of bioinformatics has also emerged recently as a useful tool.

10.
Metabolites ; 14(4)2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38668306

RESUMEN

The comprehensive examination of bile acids is of paramount importance across various fields of health sciences, influencing physiology, microbiology, internal medicine, and pharmacology. While enzymatic reaction-based photometric methods remain fundamental for total BA measurements, there is a burgeoning demand for more sophisticated techniques such as liquid chromatography-tandem mass spectrometry (LC-MS/MS) for comprehensive BA profiling. This evolution reflects a need for nuanced diagnostic assessments in clinical practice. In canines, a BA assessment involves considering factors, such as food composition, transit times, and breed-specific variations. Multiple matrices, including blood, feces, urine, liver tissue, and gallbladder bile, offer insights into BA profiles, yet interpretations remain complex, particularly in fecal analysis due to sampling challenges and breed-specific differences. Despite ongoing efforts, a consensus regarding optimal matrices and diagnostic thresholds remains elusive, highlighting the need for further research. Emphasizing the scarcity of systematic animal studies and underscoring the importance of ap-propriate sampling methodologies, our review advocates for targeted investigations into BA alterations in canine pathology, promising insights into pathomechanisms, early disease detection, and therapeutic avenues.

11.
Metabolites ; 14(4)2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38668333

RESUMEN

Mastitis is a significant infectious disease in dairy cows, resulting in milk yield loss and culling. Early detection of mastitis-prone cows is crucial for implementing effective preventive measures before disease onset. Current diagnosis of subclinical mastitis (SCM) relies on somatic cell count assessment post-calving, lacking predictive capabilities. This study aimed to identify metabolic changes in pre-SCM cows through targeted metabolomic analysis of urine samples collected 8 wks and 4 wks before calving, using mass spectrometry. A nested case-control design was employed, involving a total of 145 multiparous dairy cows, with disease occurrence monitored pre- and postpartum. Among them, 15 disease-free cows served as healthy controls (CON), while 10 cows exclusively had SCM, excluding those with additional diseases. Urinary metabolite profiling revealed multiple alterations in acylcarnitines, amino acids, and organic acids in pre-SCM cows. Metabotyping identified 27 metabolites that distinguished pre-SCM cows from healthy CON cows at both 8 and 4 wks before parturition. However, only four metabolites per week showed significant alterations (p < 0.005). Notably, a panel of four serum metabolites (asymmetric dimethylarginine, proline, leucine, and homovanillate) at 8 wks prepartum, and another panel (asymmetric dimethylarginine, methylmalonate, citrate, and spermidine) at 4 wks prepartum, demonstrated predictive ability as urinary biomarkers for SCM risk (AUC = 0.88; p = 0.02 and AUC = 0.88; p = 0.03, respectively). In conclusion, our findings indicate that metabolite testing can identify cows at risk of SCM as early as 8 and 4 wks before parturition. Validation of the two identified metabolite panels is warranted to implement these predictive biomarkers, facilitate early intervention strategies, and improve dairy cow management to mitigate the impact of SCM. Further research is needed to confirm the efficacy and applicability of these biomarkers in practical farm settings.

12.
Metabolites ; 14(4)2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38668343

RESUMEN

Mycobacterium avium subsp. paratuberculosis (MAP) is the causative agent of bovine paratuberculosis, a chronic granulomatous enteritis leading to economic losses and posing a risk to human health due to its zoonotic potential. The pathogen cannot reliably be detected by standard methods, and immunological procedures during the infection are not well understood. Therefore, the aim of our study was to explore host-pathogen interactions in MAP-infected dairy cows and to improve diagnostic tests. Serum proteomics analysis using quantitative label-free LC-MS/MS revealed 60 differentially abundant proteins in MAP-infected dairy cows compared to healthy controls from the same infected herd and 90 differentially abundant proteins in comparison to another control group from an uninfected herd. Pathway enrichment analysis provided new insights into the immune response to MAP and susceptibility to the infection. Furthermore, we found a higher abundance of Cathepsin S (CTSS) in the serum of MAP-infected dairy cows, which is involved in multiple enriched pathways associated with the immune system. Confirmed with Western blotting, we identified CTSS as a potential biomarker for bovine paratuberculosis. This study enabled a better understanding of procedures in the host-pathogen response to MAP and improved detection of paratuberculosis-diseased cattle.

13.
Metabolites ; 14(4)2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38668367

RESUMEN

Recent studies suggest that the dietary intake of human milk oligosaccharides (HMOs) provides health benefits from infancy up to adulthood. Thus far, beneficial changes in the adult gut microbiome have been observed at oral doses of 5-20 g/day of HMOs. Efficacy of lower doses has rarely been tested. We assessed four HMO molecular species-2'Fucosyllactose (2'FL), Lacto-N-neotetraose (LNnT), 3'Sialyllactose (3'SL), and 6'Sialyllactose (6'SL)-at predicted doses from 0.3 to 5 g/day for 6-year-old children and adults (n = 6 each), using ex vivo SIFR® technology (Cryptobiotix, Ghent, Belgium). This technology employing bioreactor fermentation on fecal samples enables us to investigate microbial fermentation products that are intractable in vivo given their rapid absorption/consumption in the human gut. We found that HMOs significantly increased short-chain fatty acids (SCFAs), acetate, propionate (in children/adults), and butyrate (in adults) from predicted doses of 0.3-0.5 g/day onwards, with stronger effects as dosing increased. The fermentation of 6'SL had the greatest effect on propionate, LNnT most strongly increased butyrate, and 2'FL and 3'SL most strongly increased acetate. An untargeted metabolomic analysis revealed that HMOs enhanced immune-related metabolites beyond SCFAs, such as aromatic lactic acids (indole-3-lactic acid/3-phenyllactic acid) and 2-hydroxyisocaproic acid, as well as gut-brain-axis-related metabolites (γ-aminobutyric acid/3-hydroxybutyric acid/acetylcholine) and vitamins. The effects of low doses of HMOs potentially originate from the highly specific stimulation of keystone species belonging to, for example, the Bifidobacteriaceae family, which had already significantly increased at doses of only 0.5 g/day LNnT (adults) and 1 g/day 2'FL (children/adults).

14.
Toxins (Basel) ; 16(4)2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38668591

RESUMEN

Trichothecenes produced by Fusarium species are commonly detected in oats. However, the ratios of the concentrations of free trichothecenes and their conjugates and how they are impacted by different interacting environmental conditions are not well documented. This study aims to examine the effect of water activity (0.95 and 0.98 aw) and temperature (20 and 25 °C) stress on the production of T-2 and HT-2 toxins, deoxynivalenol and their conjugates, as well as diacetoxyscirpenol (DAS). Multiple mycotoxins were detected using liquid chromatography-tandem mass spectrometry from 64 contaminated oat samples. The highest concentrations of HT-2-glucoside (HT-2-Glc) were observed at 0.98 aw and 20 °C, and were higher than other type A trichothecenes in the natural oats' treatments. However, no statistical differences were found between the mean concentrations of HT-2-Glc and HT-2 toxins in all storage conditions analysed. DAS concentrations were generally low and highest at 0.95 aw and 20 °C, while deoxynivalenol-3-glucoside levels were highest at 0.98 aw and 20 °C in the naturally contaminated oats. Emerging mycotoxins such as beauvericin, moniliformin, and enniatins mostly increased with a rise in water activity and temperature in the naturally contaminated oats treatment. This study reinforces the importance of storage aw and temperature conditions in the high risk of free and modified toxin contamination of small cereal grains.


Asunto(s)
Avena , Contaminación de Alimentos , Fusarium , Glucósidos , Toxina T-2/análogos & derivados , Tricotecenos , Fusarium/metabolismo , Avena/microbiología , Avena/química , Tricotecenos/análisis , Glucósidos/análisis , Contaminación de Alimentos/análisis , Temperatura , Micotoxinas/análisis , Toxina T-2/análisis
15.
Toxins (Basel) ; 16(4)2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38668595

RESUMEN

Ciguatera poisoning (CP) is the most common type of marine biotoxin food poisoning worldwide, and it is caused by ciguatoxins (CTXs), thermostable polyether toxins produced by dinoflagellate Gambierdiscus and Fukuyoa spp. It is typically caused by the consumption of large fish high on the food chain that have accumulated CTXs in their flesh. CTXs in trace amounts are found in natural samples, and they mainly induce neurotoxic effects in consumers at concentrations as low as 0.2 µg/kg. The U.S. Food and Drug Administration has established CTX maximum permitted levels of 0.01 µg/kg for CTX1B and 0.1 µg/kg for C-CTX1 based on toxicological data. More than 20 variants of the CTX1B and CTX3C series have been identified, and the simultaneous detection of trace amounts of CTX analogs has recently been required. Previously published works using LC-MS/MS achieved the safety levels by monitoring the sodium adduct ions of CTXs ([M+Na]+ > [M+Na]+). In this study, we optimized a highly sensitive method for the detection of CTXs using the sodium or lithium adducts, [M+Na]+ or [M+Li]+, by adding alkali metals such as Na+ or Li+ to the mobile phase. This work demonstrates that CTXs can be successfully detected at the low concentrations recommended by the FDA with good chromatographic separation using LC-MS/MS. It also reports on the method's new analytical conditions and accuracy using [M+Li]+.


Asunto(s)
Ciguatoxinas , Espectrometría de Masas en Tándem , Ciguatoxinas/análisis , Cromatografía Liquida , Litio/análisis , Intoxicación por Ciguatera , Contaminación de Alimentos/análisis , Límite de Detección , Animales
16.
Toxins (Basel) ; 16(4)2024 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-38668606

RESUMEN

This study provides a new methodology for the rapid analysis of numerous venom samples in an automated fashion. Here, we use LC-MS (Liquid Chromatography-Mass Spectrometry) for venom separation and toxin analysis at the accurate mass level combined with new in-house written bioinformatic scripts to obtain high-throughput results. This analytical methodology was validated using 31 venoms from all members of a monophyletic clade of Australian elapids: brown snakes (Pseudonaja spp.) and taipans (Oxyuranus spp.). In a previous study, we revealed extensive venom variation within this clade, but the data was manually processed and MS peaks were integrated into a time-consuming and labour-intensive approach. By comparing the manual approach to our new automated approach, we now present a faster and more efficient pipeline for analysing venom variation. Pooled venom separations with post-column toxin fractionations were performed for subsequent high-throughput venomics to obtain toxin IDs correlating to accurate masses for all fractionated toxins. This workflow adds another dimension to the field of venom analysis by providing opportunities to rapidly perform in-depth studies on venom variation. Our pipeline opens new possibilities for studying animal venoms as evolutionary model systems and investigating venom variation to aid in the development of better antivenoms.


Asunto(s)
Biología Computacional , Venenos Elapídicos , Animales , Cromatografía Liquida , Venenos Elapídicos/química , Venenos Elapídicos/análisis , Espectrometría de Masas/métodos , Elapidae , 60705
17.
Nanomedicine (Lond) ; 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38639565

RESUMEN

Aim & objective: Levormeloxifene (L-ORM) and raloxifene (RAL) are selective estrogen receptor modulators used in the treatment of postmenopausal osteoporosis and breast cancer. Here, we developed and validated a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the simultaneous estimation of both drugs. Materials & methods: A quality-by-design (QbD) approach was used for the optimization of the nanoemulsion, and US FDA guidelines were followed for method validation. Results: Multiple reaction monitoring transitions were used for L-ORM (459.05→98.50), RAL (475.00→112.02) and internal standard (180.10→110.2). Analytes were resolved in a C18 column with 80:20 v/v% acetonitrile (ACN), 0.1% formic acid in triple-distilled water as a mobile phase. The developed method was linear over a concentration range of 1-600 ng/ml. Pharmacokinetic results of free L-ORM-RAL and the L-ORM-RAL nanoemulsion showed Cmax of free L-ORM - 70.65 ± 16.64, free RAL 13.53 ± 2.72, L-ORM nanoemulsion 65.07 ± 14.0 and RAL-nanoemulsion 59.27 ± 17.44 ng/ml. Conclusion: Future findings will contribute to the treatment of postmenopausal osteoporosis and breast cancer using L-ORM and RAL.

18.
Water Res ; 256: 121570, 2024 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-38640564

RESUMEN

Per- and polyfluoroalkyl substances (PFAS) are environmental contaminants of concern due to their long persistence in the environment, toxicity, and widespread presence in humans and wildlife. Knowledge regarding the extent of PFAS contamination in the environment is limited due to the need for analytical methods that can reliably quantify all PFAS, since traditional target methods using liquid chromatography (LC)-mass spectrometry (MS) fail to capture many. For a more comprehensive analysis, a total organic fluorine (TOF) method can be used as a screening tool. We combined TOF analysis with target LC-MS/MS analysis to create a statewide PFAS hotspot map for surface waters throughout South Carolina. Thirty-eight of 40 locations sampled contained detectable concentrations of organic fluorine (above 100 ng/L). Of the 33 target PFAS analyzed using LC-MS/MS, the most prevalent were perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), perfluoroheptanoic acid (PFHpA), and perfluorohexanesulfonate (PFHxS). On average, LC-MS/MS only accounted for 2 % of the TOF measured. Locations with high TOF did not necessarily correlate to high total quantified PFAS concentrations and vice-versa, demonstrating the limitations of target PFAS analysis and indicating that LC-MS may miss highly contaminated sites. Results suggest that future surveys should utilize TOF to more comprehensively capture PFAS in water bodies.

19.
J Hazard Mater ; 471: 134256, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38640673

RESUMEN

A new method for the determination of 26 legacy and emerging per- and polyfluoroalkyl substances (PFASs) in marine sediment pore water was developed using online solid phase extraction coupled with liquid chromatography-tandem mass spectrometry. The proposed method requires only about 1 mL of pore water samples. Satisfactory recoveries of most target PFASs (83.55-125.30 %) were achieved, with good precision (RSD of 1.09-16.53 %), linearity (R2 ≥ 0.990), and sensitivity (MDLs: 0.05 ng/L-5.00 ng/L for most PFASs). Subsequently, the method was applied to determine PFASs in the sediment pore water of five mariculture bays in the Bohai and Yellow Seas of China for the first time. Fifteen PFASs were detected with total concentrations ranging from 150.23 ng/L to 1838.48 ng/L (mean = 636.80 ng/L). The ∑PFASs and PFOA concentrations in sediment pore water were remarkably higher than those in surface seawater (tens of ng/L), indicating that the potential toxic effect of PFASs on benthic organisms may be underestimated. PFPeA was mainly distributed in pore water, and the partition of PFHpA (50.99 %) and PFOA (49.01 %) was almost equal in the solid and liquid phases. The proportions of all other PFASs partitioned in marine sediments were significantly higher than those in pore water.

20.
Artículo en Inglés | MEDLINE | ID: mdl-38640793

RESUMEN

24-hour urinary free cortisol (UFC) is considered as the first-line test for screening and diagnosis of Cushing's syndrome. Although 24-hour UFC assay has been extensively studied by liquid chromatography-tandem mass spectrometry (LC-MS/MS), an accurate assay coupled with a reliable sample preparation procedure and a method-specific reference interval would be very important for reasonable diagnosis. In this study, a simple dilute and shoot method has been proposed for UFC determination by LC-MS/MS. Namely, 50 µL of urine sample was mixed with 200 µL of a 50 % methanol/water solution containing the internal standard cortisol-13C3. The mixture was centrifuged and the supernatant was used for direct analysis by LC-MS/MS. This method was validated with wide linear range from 0.625 to 500 ng/ml with coefficients of variation (CVs) ≤ 3.64 %, excellent precision (intra-day CVs ≤ 5.70 % and inter-day CVs ≤ 5.33 %) and good recovery in the range of 93.3-109 %. The preservatives were further evaluated for urine storage. It was recommended that no preservatives could be used in collection of 24-hour urine for good detecting peaks. The investigation of reference interval and diagnostic performance finally confirmed the potential usage of this LC-MS/MS assay in routing clinical testing.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...